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D E T E R M I N I N G  T H E  E L A S T I C  C H A R A C T E R I S T I C S  O F  

H O M O G E N E O U S  A N I S O T R O P I C  B O D I E S  

I. Yu. Tsvelodub UDC 539.3 

As is generally known [1], in an arbitrary system of coordinates xi(i = 1, 2, 3), Hooke's Law for an anisotropic body 

has the form 

e ~ =  an a,,, ' ( k , l =  1 ,2 ,3 )  (1) 

o r  

a u = b~,,,e,,,,, (k, l = 1, 2, 3), (2) 

where  8kl, akl, ak/rr m, bklmn are the components of the deformation, tension, elastic-pliability, and elastic-modulus tensors, 
respectively. In (1) and (2) the usual rule of summation over repeating indices is assumed. 

In the general case (of a body of a triclinic system), as a result of the known conditions of symmetry, the tensors ak/mn 

and bktmn have 21 different components. In the coordinate system associated with the major axes of anisotropy, this number 

is equal to 18, and in the presence of a single plane of symmetry (the body of a monoclinic system) it is as high as 9, etc. 

However. if the orientation of the major axes of anisotropy and the degree of symmetry of the body in question are not known 

beforehand, the determination of all of its elastic characteristics on the basis of the standard uniaxial-tension (compression) 

experiments and torsion in the directions of the coordinate axes encounters significant difficulties [2]. This is caused by the 

fact that in each such experinaent it is necessary to measure all of the deformation components. The considerations adduced 

in [ 1, pp. 150-151 ] on finding this tension tensor, which corresponds to a spherical deformation tensor and determines the major 

axes of anisotropy, can scarcely be realized in practice. 

In experimental mechanics the methods of holographic and laser speckle interferometry [3] are currently being applied 

more and more widely, permitting accurate determination of the components of the vector of the shifts of the surface of a 

deformed body. Moreover, if the external loads are known, then in order to find aklmn (or bklmn) it is possible to obtain a 

closed system of equations. The present article is devoted to construction of the latter. 

Let us consider an elastic homogeneous body of volume v with a surface S, to which external loads Pk are applied. 

causing shifts u k (k = 1, 2. 3) on S, which are assumed to be known as a result of the appropriate measurements. From this 

information it is necessary to determine all of the components of the aklmn (or bklmn) tensor. 

Let us examine the moments of the zeroth and first orders for tension and deformation: 

~ = f %du, 1r f ~d~,, (3) 
t, ,  u 

M' u = f a,,x, dv, IV' = f ek,.~dv (k, l . i= 1,2,3). 
u a 

From (1) and (3) it follows that 

N',~ = au,,,,Ar ~ ( k , l =  1 ,2 ,3 ,  l = 0 , 1 , 2 , 3 ) .  (4) 
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Let us designate 

q : , ' ,  = f = f ..,,,us, 
S s 

U~ = f u, n.x, dS ( k , l , l =  1 ,2 ,3 ) ,  (5) 
$ 

where s 1, s 2, s 3 are whole nonnegative numbers; and n k are the components of the unit vector of the normal external to S. 

From the equilibrium equations (there are no mass forces) and the Ostrogradskii-Gauss formula, we obtain the 

equalities [4] 

f ~ l l ~ . X s  ~ h % d o  = ~tlS~3 (k  = 1, 2, 3). 
x,  ( 6 )  

In particular, for n - s 1 + s 2 + s 3 = 0 (i.e. s t = s 2 = s 3 = 0), from (6) we have Qk 000 = 0 (k = 1, 2. 3). which 

corresponds to the main vector of the external forces being equal to zero. For n = 1, expressions for the moments of the 

tensions of the zeroth order through external loads follow from (6): 

M~, =Qa,~176176 ' ( k =  1 ,2 ,3 ) .  (7) 

As a result of the symmetry of the components of the tension tensor, the conditions for the main moment of the external 

forces being equal to zero derive from (7): Q3 ~176 - -  Q20m = 0, Qt ~ - Q3100 = 0. Q2 I00 - Q1010 = o. 

For n = 2, from (6) we obtain a system of 18 equations for finding all 18 tension moments of the first order [4], from 

which we have 

l 1 oo I oo I 
M'I =2Q~I "~42n = ~176 2 ~  , Mn-~ --- Oral - ~ 1  2Q]s ~176 

l ~ Loo~o = ~ "  l (8) , , , = , _ 
M ~  ~2 Mzl 2 ~2 ' M22 2 ~32~ 

1 2 ~ ~311 [ l 
- , =  

--, M33 2Q~22, M33 ~ Q ~ ,  

, = '  | ~ = L o o 2 o  , = L r o o , , + Q , o , _ o , , o ~ , , ,  MU "2 ~ ' Mr2 2 w'l ' MI2 2 x~l 

l I oo 2 l ( O o u  + On o 1ol , 1 2 = = - Q, ), M,~ = ~ - ~ ,  Mr3 2~3  ' M13 2 "~1 ~3 

t /(Oral ouo 2 1 3 I Maa = 2"~-2 + ~3 -- ~ n ) ,  Maj = 2 ~ 2 ~  M2 J = ~ 2 .  

It is necessary to note that for n _> 3 the number of equations (6) is less than the number of unknowns, and so it is 

impossible to obtain expressions for all of the tension moments of the second and higher orders due to external loads [4]. 

Let us now examine the deformation moments. From the Cauchy relations connecting ekt and u k, and the 

Ostrogradskii-Gauss formula, we have 

I f . .do = ~ f (-~., + -,.0do = 7 f ( " : ,  + . : 0 a s  (k, z = l, 2, 3), 
O O ,.~ 

where the index after the comma designates the partial derivative along the corresponding coordinate. Thus, 

1 
= 7 ( ~  + ~ )  (k, t = l, 2, a) (9) 

(the magnitudes of Ukt ~ are determined in (5)). Analogously, for k # i ~ l we have 

o 8 
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i.e. 

1 
G = I ( G + G )  (k.t=l.2. a.a~,~,,O: (lO) 

for i = k # l (there is no summation over k) 

1 
f,~,,d~ = ~ f (-,,, + ,.,,,)xdo = ~ f t ( . : , ) , ,  + ("A).~ - 
u o r 

I f tttdG - u, ldu = I f (ukn, + u,n.)x.dS - 
$ u 

and for i = k = l (there is no summation over / )  

2 N ~ -  N~= U~ + d/,~- U~ ( k , l =  1 , 2 , 3 ,  k ~ / ) .  

and l) 

Excluding J uflu from these equalities and using symbols (3) and (5), we obtain (there is no summation over k 
r 

f ,:,dr = f u,.:dv = f u::,dS- f ,,,av. 
o s ,' ( 1 1 )  

Thus, formulas (9)-(11) yield 21 relations (6 each from (9), (11) and 9 from (10)), expressing the deformation moments 

and their combinations by the components of the vector of the shifts of the points on the surface S. Taking equalities (4) into 

account, these relations form a closed system for determining ak/mn from the known tension moments.  

Let us write this system in an explicit form. We will introduce the following symbols for the unknown quantities: 

a l  = a l l l l '  ~2 ---- a u = '  ~ = a1133' Or4 = 2a1112, 

a 5 = 2a1113, CC n = 2aim,  a 7 = a2222, a s = a,,a3, ao = 2a2m, alo = 

= 2a22t3' a n  = 2a2223' ~12 = a3333' ~13 --" 2a33t2' 6t14 = 2a3313, at5 ---- 

= 2a3323, alO = 4a1212, r = 4a1213, ~ = 4at223, at,~ = 4at313' 

620 = 4a1323, a21 = 4a232y 

Then, from (4) and (9)-(11) we find 

Area q = b (p = 1, 2 . . . . .  21), 

b , =  U~ + /.~3v b7 = U~p b, = U'u, b . = U~, blo = U~, bt, = 

b,~ = u',~ + O L  b,, = u~. + uI,, e,, = u~  + u b  e,o = v~  + ul,  - vl , ,  

r .p .  14 b,, = u~, + O~, - ul , ,  G = u[, + G ,  - u~,  G = u~ + u~3, - u~,  

b~ = ul, + u ~ , -  u~, b~, = u~ + u], - u'. ,  

where the summation over q is carried out from 1 to 21, and the zero elements of the 

A u = A2a = A3~ = A4. 4 = As_ ~ =  A~. 6 = M~n, 

Ata = Az7 -- A3, = A4. 0 = As.10 = A6.tl  = M~ , AL3 = A2~ = 

= A5.14 = An.t5 = M~33, At.4 = A2. q = A3.13 = A4.1o = A$.17 = An.IS 

A13 = A2.1o = A3.14 = A4.17 = as . lo  = Ao~ = M~I 3, 

At. 6 = A2. n = A3a 5 = A4a s ffi As20 = Aom = M~ 

aTa = At2 2 = Al4.s = -- Als.2 = - Alo 2 = A2t.b = M2n, 

AT~ = At2~s -- At4ao = Alo.9 -- - At& 7 --- -- Ato.. t = A2LI1 = M~, 

+ ~ l ,  

(12) 

matrix II Apq II have the form 

A3.12 = A4.L~ = 

= M~ 
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,47.3 = A t 2 a ,  = A l , . t  4 = Alo.x 3 = - A1a,s = - A t ,  ~ = M233, 

. 47 ,  = Al2.1 a = Ats . l  7 ~'  Alo. t  o = - A I ,  o = A21.1 s = M2t2, 

.47. 5 = Atx.t  4 = A t s . l  . = A16.17 = - Ata . t  0 = - Ato. l  0 = A2t.20 = M213, 

A76  - -  At2.15 = A14.20 -~ Ate.1 a = - Als.11 = A2t.2 t - -  M223 , 

As . /  = A m .  2 = At3.4 - -  At , .o  = - A20.  t = - A2t.3 - -  M3l t ,  

A s  ~ _- Alo.  ~ = At3.Q = A17.t 0 = - A20.s = - A n z  = M ~ ,  

A s .  3 = A l o  z = At3x3 = AlT.t , = A l , . l  5 = - -  A20.t 2 = - A2t . l  2 = M333, 

Aa. , = A10.o = At3.1 o - -  A17A7 ---- Z t o t a  = - -  A2o.I 3 = - -  A i t . l  3 = M312, 

A s z  = Am. to  At317 = AlT.t . = At, .20 = - A2tA,  ---- M313, 

A s 0  = Alo . l  I = a t3 . t  s = A1720 = A l , 2 t  = -~ a20. t  5 = M323, 

AQ; = Att_~ = At5.0 = - A,,oa = - AtT.t = AIS. ,  - -  A20.5 = Mi t t ,  

a,~ 7 - -  At t .~  - -  Als . l  I ---- - A t e . 2  = - -  A17.2 - -  azo . t  0 = M t ,  

At~.s = All.12 = AI5.15 = - -  AI~.3 = - A l T j  = Als . t3  --" M~3 ,  

A . o  = All .13 = Als . t  8 = - AIT. ,  = Ala . t  ~ = A20.17 = MI12 , 

A , . to  - -  A r m  ` = A1520 = - Al6.s  ---- A1sl7 = A20.t . = Mlt3 , 

A , . l l  = A ~ m  s = A l s 2 t  = - A lo  ~ = - -  Al7  6 = A l s t s  = A2020 = M123, 

A t, t t = M ~  - M]~, A2oa, = M~,, - M3t3, A2;as = M]3 - M32,. 

The system of linear equations (12) has a unique solution, if 

detllAs~ll ~ O. (13) 

Since the elements of the matrix II Apq II are expressed through the moments Mk/i (k, l = 1, 2, 3, i = 0, 1, 2, 3), 
defined in (7) and (8), inequality (13) is the only condition that the external loads Pk must satisfy so that all of the elastic 

coefficients of a homogeneous body can be found unambiguously from the known components u k and Pk on the surface S. 

We note that in the derivation of (12), integrals over the volume v were excluded from the shifts. It is not difficult to 
see that if they are included in the unknowns, then from (4) we obtain a closed system of 24 equations for 24 quantities: ~Xp 

(p = 1, 2 . . . . .  21) and J u k d v  (k = 1, 2, 3). The latter integrals determine the average values of the shifts in the volume v, 

which are easy to fred if the solution to system (12) is known. 

The considerations cited above on determination of the strength characteristics from known values of u k and Pk at the 

boundary of S can be expanded to more complex bodies: for example, to anisotropic linear tensile-elastic bodies. In this case 

it is necessary to know the components u k and Pk on S as functions of time. 
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